LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent Down Regulation of sGC and Contributes to Exercise-Induced Pulmonary Hypertension in HFpEF.

Background: Many patients with heart failure with preserved ejection fraction (HFpEF) have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with HFpEF portend… Click to show full abstract

Background: Many patients with heart failure with preserved ejection fraction (HFpEF) have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with HFpEF portend a poor prognosis; this phenotype is referred to as combined pre-and post-capillary PH (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery smooth muscle cells (PAVSMCs). Methods: We used obese ZSF-1 leptin-receptor knock-out rats (HFpEF model), obese ZSF-1 rats treated with SU5416 to stimulate resting PH (Obese+sugen, CpcPH model), and Lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated via implanted-catheters during treadmill exercise. PA function was evaluated using MRI and myography. Overexpression of NFYA, a transcriptional-enhancer of sGCβ1, was performed by PA delivery of adeno-associated-virus 6 (AAV6). Treatment groups received SGLT2 inhibitor Empagliflozin in drinking water. PAVSMCs from rats and humans were cultured with Palmitic acid, Glucose, and Insulin (PGI) to induce metabolic-stress. Results: Obese rats showed normal resting right ventricular systolic pressures (RVSP) which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomical PA remodeling and developed elevated RVSP at rest, which was exacerbated with exercise, modeling CpcPH. Myography and MRI during dobutamine-challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species (ROS) and decreased sGCβ1 expression. Mechanistically, cultured PAVSMCs from obese rats, humans with diabetes or treated with PGI, showed increased mitochondrial-ROS, which enhanced miR-193b-dependent RNA-degradation of NFYA, resulting in decreased sGCβ1-cGMP signaling. Forced NYFA expression by AAV6 delivery increased sGCβ1 levels and improved exercise-PH in Obese+sugen rats. Treatment of Obese+sugen rats with Empagliflozin improved metabolic syndrome, reduced mitochondrial ROS and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. Conclusions: In HFpEF and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced ROS and miR-193b expression, which down-regulates NFYA-dependent sGCβ1 expression. AAV-mediated NFYA overexpression and SGLT2 inhibition restores NFYA-sGCβ1-cGMP signaling and ameliorates EIPH.

Keywords: metabolic syndrome; ros mir; mir 193b; sgc; exercise

Journal Title: Circulation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.