LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exercise Causes Arrhythmogenic Remodeling of Intracellular Calcium Dynamics in Plakophilin-2–Deficient Hearts

Photo by freestocks from unsplash

Background: Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced… Click to show full abstract

Background: Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced abundance of PKP2 leads to dysregulation of intracellular Ca2+ (Ca2+i) homeostasis. Here, we study the relation between excercise, catecholaminergic stimulation, Ca2+i homeostasis, and arrhythmogenesis in PKP2-deficient murine hearts. Methods: Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. Results: In myocytes from PKP2cKO animals, training increased sarcoplasmic reticulum Ca2+ load, increased the frequency and amplitude of spontaneous ryanodine receptor (ryanodine receptor 2)–mediated Ca2+ release events (sparks), and changed the time course of sarcomeric shortening. Phosphoproteomics analysis revealed that training led to hyperphosphorylation of phospholamban in residues 16 and 17, suggesting a catecholaminergic component. Isoproterenol-induced increase in Ca2+i transient amplitude showed a differential response to β-adrenergic blockade that depended on the purported ability of the blockers to reach intracellular receptors. Additional experiments showed significant reduction of isoproterenol-induced Ca2+i sparks and ventricular arrhythmias in PKP2cKO hearts exposed to an experimental blocker of ryanodine receptor 2 channels. Conclusions: Exercise disproportionately affects Ca2+i homeostasis in PKP2-deficient hearts in a manner facilitated by stimulation of intracellular β-adrenergic receptors and hyperphosphorylation of phospholamban. These cellular changes create a proarrhythmogenic state that can be mitigated by ryanodine receptor 2 blockade. Our data unveil an arrhythmogenic mechanism for exercise-induced or catecholaminergic life-threatening arrhythmias in the setting of PKP2 deficit. We suggest that membrane-permeable β-blockers are potentially more efficient for patients with arrhythmogenic right ventricular cardiomyopathy, highlight the potential for ryanodine receptor 2 channel blockers as treatment for the control of heart rhythm in the population at risk, and propose that PKP2-dependent and phospholamban-dependent arrhythmogenic right ventricular cardiomyopathy–related arrhythmias have a common mechanism.

Keywords: ryanodine receptor; pkp2; deficient hearts; exercise; ca2

Journal Title: Circulation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.