LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abstract 529: Circulating Pro Fibrotic Protein Promotes Fibrosis in Liver and Heart

Photo by thinkmagically from unsplash

Analyzing two sets of DNA micro array data with bioinformatics, we identified a secreted form pro-fibrotic protein (sPFP) expressed in dysfunctional brown adipose tissue (BAT) in mice. Testing our biobank… Click to show full abstract

Analyzing two sets of DNA micro array data with bioinformatics, we identified a secreted form pro-fibrotic protein (sPFP) expressed in dysfunctional brown adipose tissue (BAT) in mice. Testing our biobank samples, we found this protein increased in plasma of non-alcoholic steatohepatitis (NASH) patients or aged individuals. We generated a murine obese NASH model by imposing a high fat diet in C57BL/6NCr mice for 9-10 months since 4 weeks of age, and found that sPFP is produced predominantly by BAT. In this model, we also found that sPFP increased in plasma. We generated a murine systemic sPFP knockout (KO) model and found that liver fibrosis ameliorated in sPFP-KO model. We also suppressed circulating sPFP with a peptide vaccine targeting this molecule, and found that sPFP vaccination therapy inhibited liver fibrosis. Next, we generated sPFP gain of function (GOF) model by the administration of plasmid encoding sPFP into skeletal muscle. Liver fibrosis augmented in sPFP-GOF model, and these results suggested that sPFP has causal role for the progression of fibrotic response in liver. In the obese NASH model, we found that cardiac fibrosis also developed and it ameliorated in sPFP-KO model, indicating that sPFP may have pathological roles for heart failure with preserved ejection fraction (HFpEF) related with age-related disorders. In addition to an increase in circulating sPFP in aged individuals, we found that sPFP increased in BAT of chronological aged mice model. In vitro studies with differentiated brown adipocytes showed that c-Fos upregulated sPFP in transcript level. Our results suggest that sPFP contributes for the progression of fibrotic responses in obese or aged models. Inhibition of sPFP may become a therapy for NASH or HFpEF.

Keywords: found spfp; model; spfp; pro fibrotic; fibrotic protein

Journal Title: Circulation Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.