LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fingolimod Does Not Reduce Infarction After Focal Cerebral Ischemia in Mice During Active or Inactive Circadian Phases

Photo by repponen from unsplash

Background: It has been reported that the S1P (sphingosine 1-phosphate) receptor modulator fingolimod reduces infarction in rodent models of stroke. Recent studies have suggested that circadian rhythms affect stroke and… Click to show full abstract

Background: It has been reported that the S1P (sphingosine 1-phosphate) receptor modulator fingolimod reduces infarction in rodent models of stroke. Recent studies have suggested that circadian rhythms affect stroke and neuroprotection. Therefore, this study revisited the use of fingolimod in mouse focal cerebral ischemia to test the hypothesis that efficacy might depend on whether experiments were performed during the inactive sleep or active wake phases of the circadian cycle. Methods: Two different stroke models were implemented in male C57Bl/6 mice—transient middle cerebral artery occlusion and permanent distal middle cerebral artery occlusion. Occlusion occurred either during inactive or active circadian phases. Mice were treated with 1 mg/kg fingolimod at 30- or 60-minute postocclusion and 1 day later for permanent and transient middle cerebral artery occlusion, respectively. Infarct volume, brain swelling, hemorrhagic transformation, and behavioral outcome were assessed at 2 or 3 days poststroke. Three independent experiments were performed in 2 different laboratories. Results: Fingolimod decreased peripheral lymphocyte number in naive mice, as expected. However, it did not significantly affect infarct volume, brain swelling, hemorrhagic transformation, or behavioral outcome at 2 or 3 days after transient or permanent focal cerebral ischemia during inactive or active circadian phases of stroke onset. Conclusions: Outcomes were not improved by fingolimod in either transient or permanent focal cerebral ischemia during both active and inactive circadian phases. These negative findings suggest that further testing of fingolimod in clinical trials may not be warranted unless translational studies can identify factors associated with fingolimod’s efficacy or lack thereof.

Keywords: focal cerebral; inactive circadian; cerebral ischemia; active inactive; circadian phases

Journal Title: Stroke
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.