Abstract Responses to visually presented objects along the cortical surface of the human brain have a large-scale organization reflecting the broad categorical divisions of animacy and object size. Emerging evidence… Click to show full abstract
Abstract Responses to visually presented objects along the cortical surface of the human brain have a large-scale organization reflecting the broad categorical divisions of animacy and object size. Emerging evidence indicates that this topographical organization is supported by differences between objects in mid-level perceptual features. With regard to the timing of neural responses, images of objects quickly evoke neural responses with decodable information about animacy and object size, but are mid-level features sufficient to evoke these rapid neural responses? Or is slower iterative neural processing required to untangle information about animacy and object size from mid-level features, requiring hundreds of milliseconds more processing time? To answer this question, we used EEG to measure human neural responses to images of objects and their texform counterparts—unrecognizable images that preserve some mid-level feature information about texture and coarse form. We found that texform images evoked neural responses with early decodable information about both animacy and real-world size, as early as responses evoked by original images. Furthermore, successful cross-decoding indicates that both texform and original images evoke information about animacy and size through a common underlying neural basis. Broadly, these results indicate that the visual system contains a mid-level feature bank carrying linearly decodable information on animacy and size, which can be rapidly activated without requiring explicit recognition or protracted temporal processing.
               
Click one of the above tabs to view related content.