LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis

Photo from wikipedia

A hippocampal prosthesis is a very large scale integration (VLSI) biochip that needs to be implanted in the biological brain to solve a cognitive dysfunction. In this letter, we propose… Click to show full abstract

A hippocampal prosthesis is a very large scale integration (VLSI) biochip that needs to be implanted in the biological brain to solve a cognitive dysfunction. In this letter, we propose a novel low-complexity, small-area, and low-power programmable hippocampal neural network application-specific integrated circuit (ASIC) for a hippocampal prosthesis. It is based on the nonlinear dynamical model of the hippocampus: namely multi-input, multi-output (MIMO)–generalized Laguerre-Volterra model (GLVM). It can realize the real-time prediction of hippocampal neural activity. New hardware architecture, a storage space configuration scheme, low-power convolution, and gaussian random number generator modules are proposed. The ASIC is fabricated in 40 nm technology with a core area of 0.122 mm2 and test power of 84.4 μW. Compared with the design based on the traditional architecture, experimental results show that the core area of the chip is reduced by 84.94% and the core power is reduced by 24.30%.

Keywords: prosthesis; dynamical model; power; hippocampal prosthesis; nonlinear dynamical

Journal Title: Neural Computation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.