LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification From Positive and Biased Negative Data With Skewed Labeled Posterior Probability

Photo by cedrikwesche from unsplash

Abstract The binary classification problem has a situation where only biased data are observed in one of the classes. In this letter, we propose a new method to approach the… Click to show full abstract

Abstract The binary classification problem has a situation where only biased data are observed in one of the classes. In this letter, we propose a new method to approach the positive and biased negative (PbN) classification problem, which is a weakly supervised learning method to learn a binary classifier from positive data and negative data with biased observations. We incorporate a method to correct the negative influence due to a skewed confidence, which is represented by the posterior probability that the observed data are positive. This reduces the distortion of the posterior probability that the data are labeled, which is necessary for the empirical risk minimization of the PbN classification problem. We verified the effectiveness of the proposed method by synthetic and benchmark data experiments.

Keywords: posterior probability; classification; biased negative; positive biased; negative data

Journal Title: Neural Computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.