LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nasal Pneumococcal Density is Associated with Microaspiration and Heightened Human Alveolar Macrophage Responsiveness to Bacterial Pathogens.

Photo from wikipedia

RATIONALE Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with S.pneumoniae (Spn), although, a prerequisite of infection, is the main source of exposure and immunological boosting in… Click to show full abstract

RATIONALE Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with S.pneumoniae (Spn), although, a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited. OBJECTIVES Using a Controlled Human Infection Model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells. METHODS We collected bronchoalveolar lavages from healthy pneumococcal challenged participants aged 18-49 years. Confocal microscopy, molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations. MEASUREMENTS AND MAIN RESULTS AM from Spn-colonized exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for four months after clearance of experimental pneumococcal colonization. AM had also increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized were positively correlated with nasal pneumococcal density (r=0.71, p=0.029). Similarly, AM heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r=0.61, p=0.025). CONCLUSIONS Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AM, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AM in the alveolar spaces, alongside with their potential for non-specific protection, render them an attractive target for novel vaccines. Clinical trial registration available at http://www.isrctn.com, ID: ISRCTN16993271.

Keywords: alveolar macrophage; colonization; microaspiration; pneumococcal density; bacterial pathogens

Journal Title: American journal of respiratory and critical care medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.