This paper is dedicated to studying the following Schrodinger-Poisson system\[ \begin{cases} -\Delta u + V(x)u + K(x) \phi(x)u = f(x,u), x t > 0, \; \tau \neq 0\]with constant $\theta_0… Click to show full abstract
This paper is dedicated to studying the following Schrodinger-Poisson system\[ \begin{cases} -\Delta u + V(x)u + K(x) \phi(x)u = f(x,u), x t > 0, \; \tau \neq 0\]with constant $\theta_0 \in (0,1)$, instead of $\lim_{|t| \to \infty} \left( \int_0^t f(x,s) \, \mathrm{d}s \right)/|t|^4 = \infty$ uniformly in $x \in \mathbb{R}^3$ and the usual Nehari-type monotonic condition on $f(x,t)/|t|^3$.
               
Click one of the above tabs to view related content.