With the rapid development of nanotherapy, concerns surrounding the possible use of nanomaterials-mediated immunomodulation are growing. Thus, evaluating the effects of novel materials for potential application in nanotherapy is essential.… Click to show full abstract
With the rapid development of nanotherapy, concerns surrounding the possible use of nanomaterials-mediated immunomodulation are growing. Thus, evaluating the effects of novel materials for potential application in nanotherapy is essential. Herein, we studied the effects of TiO2-nanorods (NRs) on the immune function and their potential application in immunotherapy. TiO2-NRs exerted specific immunomodulatory effects on the main immune cells. Cytokines TNF-α and IL-2, which play a key role in antitumor processes, were upregulated more significantly than other cytokines (IL-4, IL-5, IFN-γ) in the main immune cells. The cells group treated with a high dose of TiO2-NRs (50 mg/L) for 12 h produced a higher TNF-α content of 530.4 pg/mL relative to that (238.2 pg/mL) treated with saline solution only. The TNF-α content increased to 2.2- and 4.9-fold for macrophages and lymphocytes, respectively. Also, we conclude that TiO2-NRs exposure may trigger T cell proliferation and bias toward Th1 immune response and cause a long-lasting activation of lymphocytes involved in adaptive immunity rather than an innate immunity in BALB/c mice. Furthermore, we explored the potential application of TiO2-NRs in immunotherapy. At a given dose of 1 mg/kg, the inhibition rate by TiO2-NRs (26.7%) was much higher than that by DOX (13.3%).
               
Click one of the above tabs to view related content.