LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repairing of Subchondral Defect and Articular Cartilage of Knee Joint of Rabbit by Gadolinium Containing Bio-Nanocomposites.

Photo by dlsolce from unsplash

A variety of gadolinium (Gd) based nanoparticles (NPs) were synthesized due to the unique magnetic properties of Gd-containing rare earth compounds and the particularity of micro/nano-materials, which were then incorporated… Click to show full abstract

A variety of gadolinium (Gd) based nanoparticles (NPs) were synthesized due to the unique magnetic properties of Gd-containing rare earth compounds and the particularity of micro/nano-materials, which were then incorporated into hydroxyapatite (HA) to obtain inorganic-organic composite materials. Then, HA/Gd NPs containing slow-release transforming growth factor (TGF-β1) were harvested. Adipose-derived stem cells (ADSCs) were extracted from the adipose tissue of a four-month-old New Zealand white rabbit. HA/Gd NPs were attached to absorbable gelatin sponge to obtain HA/Gd NPs/gelatin sponge composite scaffold. In addition, the third generation ADSCs were taken and cultured in the composite scaffold, so that ADSCs-HA/Gd bio-nanocomposites were obtained. The in vitro culture test of osteoblast MC3T3-E1 showed that Gd-containing NPs had good biocompatibility. The prepared HA/Gd NPs loaded with TGF-β1 were spherical, with an average particle size of (9.16 ± 3.16) μm. The NPs were easy to aggregate and adherent. Enzyme-linked immunosorbent assay (ELISA) test results showed that TGF-β1 in NPs was sustained and released continuously for 29 days. HA/Gd NPs/gelatin sponge composite scaffold combined with ADSCs were co-cultured for three days, and the electron microscope showed that the HA/Gd NPs were dispersed, and the cells could adhere and grow well. Then, animal models of rabbit knee articular cartilage defects were established and were rolled into three groups (ADSCs-HA/Gd nano group, HA/Gd nano scaffold group, and blank control). The repair area of the rabbit knee of ADSCs-HA/Gd nano group was smooth and flat, the scaffold was absorbed, the toluidine blue stain was positive, and the type II collagen immunohistochemical stain was positive. In general, ADSCs-HA/Gd nanomaterials were helpful for chondrogenic cell differentiation and had certain adoption prospects in the field of tissue engineering to repair cartilage defects.

Keywords: bio nanocomposites; articular cartilage; rabbit; cartilage; gadolinium

Journal Title: Journal of biomedical nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.