The perceived color of a uniform image patch depends not only on the spectral content of the light that reaches the eye but also on its context. One of the… Click to show full abstract
The perceived color of a uniform image patch depends not only on the spectral content of the light that reaches the eye but also on its context. One of the most extensively studied forms of context dependence is a simultaneous contrast display: a center-surround display containing a homogeneous target embedded in a homogenous surround. A number of models have been proposed to account for the chromatic transformations of targets induced by such surrounds, but they were typically derived in the restricted context of experiments using achromatic targets with surrounds that varied along the cardinal axes of color space. There is currently no theoretical consensus that predicts the target color that produces the largest perceived color difference for two arbitrarily chosen surround colors, or what surround would give the largest color induction for an arbitrarily chosen target. Here, we present a method for assessing simultaneous contrast that avoids some of the methodological issues that arise with nulling and matching experiments and diminishes the contribution of temporal adaption. Observers were presented with pairs of center-surround patterns and ordered them from largest to smallest in perceived dissimilarity. We find that the perceived difference for two arbitrarily chosen surrounds is largest when the target falls on the line connecting the two surrounds in color space. We also find that the magnitude of induction is larger for larger differences between chromatic targets and surrounds of the same hue. Our results are consistent with the direction law (Ekroll & Faul, 2012b), and with a generalization of Kirschmann's fourth law, even for viewing conditions that do not favor temporal adaptation.
               
Click one of the above tabs to view related content.