Estimation of visuospatial number typically has a limited linear range that goes well beyond the subitizing range but typically not beyond 20 items without calibration procedures. Three experiments involving a… Click to show full abstract
Estimation of visuospatial number typically has a limited linear range that goes well beyond the subitizing range but typically not beyond 20 items without calibration procedures. Three experiments involving a total of 104 undergraduate students, each tested once, sought to determine if the limit on the linear range represented a capacity limitation of a linear accumulator or might be the result of a strategy based on subdividing spatial displays into potentially subitizable subsets. For visual and auditory temporal numbers for a large range of numbers (2–58; Experiment 1), the (unbiased) linear range was found to be quite restricted (three or four items). Using matched linear spatial number stimuli (Experiment 2), the linear range observed extended to about nine or 10 items. Experiment 3 compared estimates when simultaneous two-dimensional spatial number displays were presented briefly, with estimates for identical displays that accumulated over time. The linear range of estimates for accumulating spatial displays reached only 11 items, whereas that for briefly presented displays extended to about 20 items. These results suggest that the limit on the linear range is not simply a capacity limitation in a linear accumulator. Rather, they support the idea that linear spatial number estimation for the range from five to 20 may be based on subdividing the display into a subitizable number of (potentially) subitizable groups, even if those groups are not outwardly marked.
               
Click one of the above tabs to view related content.