Visual experience during early postnatal life plays an important role in the development of neural circuits that support normal vision. Conditions that disrupt visual experience can alter the structure and… Click to show full abstract
Visual experience during early postnatal life plays an important role in the development of neural circuits that support normal vision. Conditions that disrupt visual experience can alter the structure and function of neurons to produce a functional impairment, amblyopia, in the affected eye that can last a lifetime. Susceptibility to the neural modifications presumed to underlie amblyopia is confined to the early years of life during the so-called critical period. Up until recently, recovery from the effects of visual deprivation was likewise thought to be possible only early in life; however, research in rodents has demonstrated that under certain conditions recovery can occur at ages beyond the critical period. We have observed a remarkable recovery from the effects of visual deprivation in cats following temporary retinal inactivation with intraocular application of tetrodotoxin, a potent neural anesthetic. Notably, retinal inactivation produces rapid and significant structural and functional recovery at ages beyond what can be achieved with conventional therapy. This talk will present results from our studies on the use of retinal inactivation to resource plasticity capacity and promote recovery from the effects of early visual deprivation.
               
Click one of the above tabs to view related content.