In this paper, we examine the dynamics of contrast-comparison and contrast-normalization processes. Observers adapted (for 1 second) to a grid of Gabor patches at one contrast; then a test pattern… Click to show full abstract
In this paper, we examine the dynamics of contrast-comparison and contrast-normalization processes. Observers adapted (for 1 second) to a grid of Gabor patches at one contrast; then a test pattern (which varied in duration from 12 ms to 3012 ms) was shown; and then the adapt pattern was shown again (1 second). All the Gabor patches in all the adapt patterns had 50% contrast. The test pattern was the same as the adapt pattern except that the Gabor patches in the test pattern had two different contrasts; the test contrasts varied from row to row (horizontal test pattern) or column to column (vertical test pattern). The task was to identify the orientation of the contrast variation in the test pattern (in other words, the observer performed a second-order orientation identification task). The two contrasts in each test pattern were varied while keeping the difference between the two contrasts constant. We have previously found that the observer's performance is poor for test patterns containing contrasts both above and below the adapt patterns' contrast (what we have called the “straddle effect”) when the test duration is approximately 100 ms. Here, we find the straddle effect persists at all test durations we used. Other features of the results varied dramatically with test duration. We find that a simple model containing contrast-comparison and contrast-normalization processes provides a good explanation for the psychophysical results. The results provide some insight into the dynamics of these processes.
               
Click one of the above tabs to view related content.