LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Type-1 cytokines regulate matrix metalloprotease-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.

Photo from wikipedia

Loss of melanocytes is the pathological hallmark of vitiligo, a chronic inflammatory skin depigmenting disorder induced by exaggerated immune response, including autoreactive CD8 T cells producing high levels of type-1… Click to show full abstract

Loss of melanocytes is the pathological hallmark of vitiligo, a chronic inflammatory skin depigmenting disorder induced by exaggerated immune response, including autoreactive CD8 T cells producing high levels of type-1 cytokines. However, the interplay between this inflammatory response and melanocyte disappearance remains to be fully characterized. Here, we demonstrate that vitiligo skin contains a significant proportion of suprabasal melanocytes, associated with disruption of E-cadherin expression, a major protein involved in melanocyte adhesion. This phenomenon is also observed in lesional psoriatic skin. Importantly, apoptotic melanocytes were mainly observed once cells were detached from the basal layer of the epidermis, suggesting that additional mechanism(s) could be involved in melanocyte loss. The type-1 cytokines IFNg and TNFa induce melanocyte detachment through E-cadherin disruption, and the release of its soluble form, partly due to the matrix metalloproteinase MMP-9. MMP-9, whose levels are increased in vitiligo skin and patients' sera, is produced by keratinocytes in response to IFNg and TNFa. Inhibition of MMP-9 or the JAK/STAT signaling pathway prevents melanocyte detachment in vitro and in vivo. Therefore, stabilization of melanocytes in the basal layer of the epidermis by preventing E-cadherin disruption appears promising to prevent the depigmentation occurring in vitiligo and during chronic skin inflammation.

Keywords: type cytokines; vitiligo; disruption; skin; cadherin disruption; loss

Journal Title: JCI insight
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.