Patients with active acromegaly (ACRO) exhibit low hepatocellular lipids (HCL) despite pronounced insulin resistance (IR). This contrasts the strong association of IR with non-alcoholic fatty liver disease in the general… Click to show full abstract
Patients with active acromegaly (ACRO) exhibit low hepatocellular lipids (HCL) despite pronounced insulin resistance (IR). This contrasts the strong association of IR with non-alcoholic fatty liver disease in the general population. Since low HCL in acromegaly might be caused by changes in oxidative substrate metabolism, we investigated mitochondrial activity and plasma metabolomics/lipidomics in active acromegaly. Fifteen ACRO and seventeen healthy controls (CON) matched for age, BMI, gender and body composition underwent 31P/1H-7T-MR-spectroscopy of the liver and skeletal muscle, as well as plasma metabolomic profiling and an oral glucose tolerance test. ACRO showed significant lower HCL but ATP-synthesis rate was significantly increased compared to CON. Furthermore, a decreased ratio of unsaturated to saturated intrahepatocellular fatty acids was found in ACRO. Within assessed plasma lipids, lipidomics, and metabolomics, decreased carnitine species also indicate increased mitochondrial activity. We therefore conclude that excess of growth hormone (GH) in humans counteracts hepatocellular lipid accumulation by increased hepatic ATP-synthesis. This is accompanied by a decreased ratio of unsaturated-to-saturated lipids in hepatocytes and by a metabolomic profile reflecting the increase in mitochondrial activity. Thus, these findings help to better understand GH-regulated antisteatotic pathways and provide a better insight into potential novel therapeutic targets for treating NAFLD.
               
Click one of the above tabs to view related content.