LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microglia regulate brain Progranulin levels through the endocytosis-lysosomal pathway.

Photo from wikipedia

Genetic variants in Granulin (GRN), which encodes the secreted glycoprotein Progranulin (PGRN), are associated with several neurodegenerative diseases including frontotemporal lobar degeneration, neuronal ceroid lipofuscinosis, and Alzheimer's disease. These genetic… Click to show full abstract

Genetic variants in Granulin (GRN), which encodes the secreted glycoprotein Progranulin (PGRN), are associated with several neurodegenerative diseases including frontotemporal lobar degeneration, neuronal ceroid lipofuscinosis, and Alzheimer's disease. These genetic alterations manifest in pathological changes due to a reduction of PGRN expression; therefore, identifying factors that can modulate PGRN levels in vivo would enhance our understanding of PGRN in neurodegeneration, and could reveal novel potential therapeutic targets. Here, we report that modulation of the endocytosis-lysosomal pathway via reduction of Nemo-like kinase (Nlk) in microglia, and not neurons, can alter total brain Pgrn levels in mice. We demonstrate that Nlk reduction promotes Pgrn degradation by enhancing its trafficking through endocytosis-lysosomal pathway, specifically in microglia. Furthermore, genetic interaction studies in mice showed that Nlk heterozygosity in Grn haploinsufficient mice further reduces Pgrn levels and induces neuropathological phenotypes associated with PGRN deficiency. Our results reveal a new mechanism for Pgrn level regulation in the brain through the active catabolism by microglia and provide insights into the pathophysiology of PGRN-associated diseases.

Keywords: endocytosis lysosomal; lysosomal pathway; progranulin; pgrn; brain

Journal Title: JCI insight
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.