LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo.

Photo from wikipedia

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne bunyavirus that recently emerged in East Asian countries. SFTS is characterized by high fever, thrombocytopenia, leukopenia, multiorgan failure, and… Click to show full abstract

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne bunyavirus that recently emerged in East Asian countries. SFTS is characterized by high fever, thrombocytopenia, leukopenia, multiorgan failure, and hemorrhage with case fatality rates of 6.3% to 30%. Neither antivirals nor vaccines are available at present. We previously demonstrated that neutralizing antibodies specific for SFTSV glycoprotein (Gn) played a vital role in the survival of patients with SFTS. Nanobodies from camels present unique properties, such as thermostability, high affinity, and low immunogenicity. In the current study, mammalian expressed SFTSV Gn was used to immunize a camel, and functional nanobodies were isolated from the B cell nanobody library constructed from the immunized animal. Clone SNB02 was selected for in-depth analysis for its inhibition of SFTSV replication both in vitro and in vivo. We showed that SNB02 potently inhibited SFTSV infection and prevented thrombocytopenia in a humanized mouse model and is a potential candidate for therapeutics.

Keywords: vivo; antibody inhibits; single domain; inhibits sftsv; domain antibody; sftsv mitigates

Journal Title: JCI insight
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.