LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intact mitochondrial substrate efflux is essential to prevent tubular injury in a sex-dependent manner.

Photo from wikipedia

The importance of healthy mitochondrial function is implicated in the prevention of chronic/diabetic kidney diseases (CKD/DKD). Sex differences also play an important role in DKD. Our previous studies revealed that… Click to show full abstract

The importance of healthy mitochondrial function is implicated in the prevention of chronic/diabetic kidney diseases (CKD/DKD). Sex differences also play an important role in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase - CrAT) in proximal tubules causes renal injury. Here we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT knockout model ("PT-CrATHET" mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Females had a significantly weaker transcriptional response in metabolism but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift towards a more glycolytic phenotype, but females were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfy proximal tubular energy demand. Our findings have potentially broad implications as both the glycolytic shift and the sexual dimorphisms discovered herein offer new modalities for future interventions for treating kidney disease.

Keywords: intact mitochondrial; injury; substrate efflux; mitochondrial substrate; sex

Journal Title: JCI insight
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.