Viral illnesses like SARS-CoV-2 have pathologic effects on non-respiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting… Click to show full abstract
Viral illnesses like SARS-CoV-2 have pathologic effects on non-respiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2 / COVID-19 or Rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in Zhx2 hypomorph and Zhx2+/+ mice to mimic COVID-19 related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of Minimal Change Disease (MCD), that improved after depletion of TNF-α or sIL-4Rα or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered pSTAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury and acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2 or IL-13 or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR-Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.
               
Click one of the above tabs to view related content.