Biological sex and host genetics influence HIV pathogenesis. Females have a higher likelihood of spontaneous viral control and lower setpoint viral load (spVL). No prior studies have assessed sex-specific genetics… Click to show full abstract
Biological sex and host genetics influence HIV pathogenesis. Females have a higher likelihood of spontaneous viral control and lower setpoint viral load (spVL). No prior studies have assessed sex-specific genetics of HIV. To address this, we performed a sex stratified genome-wide association study using data from the International Collaboration for the Genomics of HIV. Although it is the largest collection of genomic data in HIV, this multi-ethnic sample of 9,705 people is 81.3% male. We sought to identify sex-specific genetic variants and genes associated with HIV spVL and control. We confirmed associations in the HLA and CCR5 regions in males, and HLA in females. Gene-based analyses detected associations between HIV spVL and PET100 (Pvalue=8.36x10-07), PCP2 (Pvalue=8.81x10-07), XAB2 (Pvalue=1.32x10-6) and STXBP2 (Pvalue=1.65x10-4) only in males. We detected variants with a significant sex-differential effect on spVL in SDC3 and PUM1 (rs10914268,Pvalue=1.93x10-08) and PSORS1C2 (rs1265159, Pvalue=3.26x10-08) and on HIV control in SUB1 (rs687659, Pvalue=1.02×10-08), AL158151.3, PTPA and IER5L (rs4387067, Pvalue=2.07×10-09). Those variants have epigenetic and genetic interactions with relevant genes with both cis and trans effects. In summary, we identified sex-shared associations at the single variant level, sex-specific associations at the gene-based level, and genetic variants with significant differential effects between the sexes.
               
Click one of the above tabs to view related content.