A newly developed precipitation phase metric is used to detect the impact of urbanization on the nature of precipitation at Toronto, Ontario, Canada, by contrasting the relative amounts of rain… Click to show full abstract
A newly developed precipitation phase metric is used to detect the impact of urbanization on the nature of precipitation at Toronto, Ontario, Canada, by contrasting the relative amounts of rain and snow. A total of 162 years of observed precipitation data were analyzed to classify the nature of winter-season precipitation for the city of Toronto. In addition, shorter records were examined for nearby climate stations in less-urbanized areas in and near Toronto. For Toronto, all winters from 1849 to 2010 as well as three climate normal periods (1961–90, 1971–2000, and 1981–2010) were thus categorized for the Toronto climate record. The results show that Toronto winters have become increasingly “rainy” across these time periods in a statistically significant fashion, consistent with a warming climate. Toronto was compared with the other less urban sites to tease out the impacts of the urban heat island from larger-scale warming. This yielded an estimate of 19%–27% of the Toronto shift in precipitation type (from snow to rain) that can be attributed to urbanization for coincident time periods. Other regions characterized by similar climates and urbanization with temperatures near the freezing point are likely to experience similar climatic changes expressed as a change in the phase of winter-season precipitation.
               
Click one of the above tabs to view related content.