AbstractThis paper improves an extreme-value-theory-based detection and attribution method and then applies it to four types of extreme temperatures, annual minimum daily minimum (TNn) and maximum (TXn) and annual maximum… Click to show full abstract
AbstractThis paper improves an extreme-value-theory-based detection and attribution method and then applies it to four types of extreme temperatures, annual minimum daily minimum (TNn) and maximum (TXn) and annual maximum daily minimum (TNx) and maximum (TXx), using the HadEX2 observation and the CMIP5 multimodel simulation datasets of the period 1951–2010 at 17 subcontinent regions. The methodology is an analog of the fingerprinting method adapted to extremes using the generalized extreme value (GEV) distribution. The signals are estimated as the time-dependent location parameters of GEV distributions fitted to extremes simulated by multimodel ensembles under anthropogenic (ANT), natural (NAT), or combined anthropogenic and natural (ALL) external forcings. The observed extremes are modeled by GEV distributions whose location parameters incorporate the signals as covariates. A coordinate descent algorithm improves both computational efficiency and accuracy in comparison to the existing method, facilitatin...
               
Click one of the above tabs to view related content.