AbstractChanges in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and… Click to show full abstract
AbstractChanges in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations from 1956 to 2005 are analyzed. The results show a significant shift from light to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipita...
               
Click one of the above tabs to view related content.