AbstractDistributions of precipitation cluster power (latent heat release rate integrated over contiguous precipitating pixels) are examined in 1°–2°-resolution members of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate… Click to show full abstract
AbstractDistributions of precipitation cluster power (latent heat release rate integrated over contiguous precipitating pixels) are examined in 1°–2°-resolution members of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate model ensemble. These approximately reproduce the power-law range and large event cutoff seen in observations and the High Resolution Atmospheric Model (HiRAM) at 0.25°–0.5° in Part I. Under the representative concentration pathway 8.5 (RCP8.5) global warming scenario, the change in the probability of the most intense storm clusters appears in all models and is consistent with HiRAM output, increasing by up to an order of magnitude relative to historical climate. For the three models in the ensemble with continuous time series of high-resolution output, there is substantial variability on when these probability increases for the most powerful storm clusters become detectable, ranging from detectable within the observational period to statistically significant trends em...
               
Click one of the above tabs to view related content.