Abstract In the east Pacific (EP) intertropical convergence zone (ITCZ), Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) latent heating retrievals suggest a top-heavy structure; however, light precipitation and its… Click to show full abstract
Abstract In the east Pacific (EP) intertropical convergence zone (ITCZ), Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) latent heating retrievals suggest a top-heavy structure; however, light precipitation and its associated low-level heating are underestimated by the PR. This study uses stratiform and deep convective precipitation from the TRMM PR and shallow precipitation from the more sensitive CloudSat radar to assess the seasonal latent heating structure in the EP ITCZ (130°–90°W) for 1998–2014. This study also uses reanalyses (MERRA-2, ERA-Interim, and NCEP–NCAR) to analyze the meridional circulation linked to variations in ITCZ heating. The TRMM/CloudSat heating profiles suggest a distinct seasonality. During DJF, latent heating peaks at 800 hPa because of the predominance of shallow convection and rises to 700 hPa during MAM as the contribution from deep convective rain increases. During JJA and SON, stratiform precipitation increases and the latent heating has a double peak a...
               
Click one of the above tabs to view related content.