LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region?

Photo from wikipedia

More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four… Click to show full abstract

More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

Keywords: quality; data sparse; tibetan plateau; region; modern atmospheric

Journal Title: Journal of Climate
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.