LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Budgets for Decadal Variability in Pacific Ocean Heat Content

Photo by phfft from unsplash

A slowdown in the rate of surface warming in the early 2000s led to renewed interest in the redistribution of ocean heat content (OHC) and its relationship with internal climate… Click to show full abstract

A slowdown in the rate of surface warming in the early 2000s led to renewed interest in the redistribution of ocean heat content (OHC) and its relationship with internal climate variability. We use the Community Earth System Model version 1 to study the relationship between OHC and the interdecadal Pacific oscillation (IPO), a major mode of decadal sea surface temperature variability in the Pacific Ocean. By comparing the relative contributions of surface heat flux and ocean dynamics to changes in OHC for different phases of the IPO, we try to identify the underlying physical processes involved. Our results suggest that during IPO phase transitions, changes of 0–300-m OHC across the northern extratropical Pacific are positively contributed by both surface heat flux and oceanic heat transport. By contrast, oceanic heat transport appears to drive the OHC changes in equatorial Pacific whereas surface heat flux acts as a damping term. During a positive IPO phase, weakened wind-driven circulation acts to increase the OHC in the equatorial Pacific while the enhanced evaporation acts to damp OHC anomalies. In the Kuroshio–Oyashio Extension region, a dipole anomaly of zonal heat advection amplifies an OHC dipole anomaly that moves eastward, while strong turbulent heat fluxes act to dampen this OHC anomaly. In the northern subtropical Pacific, both the wind-driven evaporation change and the change of zonal heat advection along Kuroshio Extension contribute to the OHC change during phase transition. For the northern subpolar Pacific, both surface heat flux and enhanced meridional advection contribute to the positive OHC anomalies during the positive IPO phase.

Keywords: pacific; ocean heat; ohc; variability; heat content; heat

Journal Title: Journal of Climate
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.