Human activities such as fossil fuel combustion, land-use change, nitrogen (N) fertilizer use, emission of livestock, and waste excretion accelerate the transformation of reactive N and its impact on the… Click to show full abstract
Human activities such as fossil fuel combustion, land-use change, nitrogen (N) fertilizer use, emission of livestock, and waste excretion accelerate the transformation of reactive N and its impact on the marine environment. This study elucidates that anthropogenic N fluxes (ANFs) from atmospheric and river deposition exacerbate Arctic warming and sea ice loss via physical–biological feedback. The impact of physical–biological feedback is quantified through a suite of experiments using a coupled climate–ocean–biogeochemical model (GFDL-CM2.1-TOPAZ) by prescribing the preindustrial and contemporary amounts of riverine and atmospheric N fluxes into the Arctic Ocean. The experiment forced by ANFs represents the increase in ocean N inventory and chlorophyll concentrations in present and projected future Arctic Ocean relative to the experiment forced by preindustrial N flux inputs. The enhanced chlorophyll concentrations by ANFs reinforce shortwave attenuation in the upper ocean, generating additional warming in the Arctic Ocean. The strongest responses are simulated in the Eurasian shelf seas (Kara, Barents, and Laptev Seas; 65°–90°N, 20°–160°E) due to increased N fluxes, where the annual mean surface temperature increase by 12% and the annual mean sea ice concentration decrease by 17% relative to the future projection, forced by preindustrial N inputs.
               
Click one of the above tabs to view related content.