AbstractExtreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of life and property. Despite these hazards, little is known about the city-scale… Click to show full abstract
AbstractExtreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of life and property. Despite these hazards, little is known about the city-scale variability of heavy rainfall events. In the current study, gridded stage IV radar data from 2002 to 2015 are employed to investigate the clustering and the spatial variability of simultaneous rainfall exceedances in the greater New York area. Multivariate clustering based on partitioning around medoids is applied to the extreme rainfall events’ average intensity and areal extent for the 1- and 24-h accumulated rainfall during winter (December–February) and summer (June–August) seasons. The atmospheric teleconnections of the daily extreme event for winter and summer are investigated using compositing of ERA-Interim. For both 1- and 24-h durations, the winter season extreme rainfall events have larger areal extent than the summer season extreme rainfall events. Winter extreme events are associated with deep and ...
               
Click one of the above tabs to view related content.