River discharge (RD) estimates are necessary for many applications, including water management, flood risk, and water cycle studies. Satellite-derived long-term GIEMS-D3 surface water extent (SWE) maps and HydroSHEDS data, at… Click to show full abstract
River discharge (RD) estimates are necessary for many applications, including water management, flood risk, and water cycle studies. Satellite-derived long-term GIEMS-D3 surface water extent (SWE) maps and HydroSHEDS data, at 90-m resolution, are here used to estimate several hydrological quantities at a monthly time scale over a few selected locations within the Amazon basin. Two methods are first presented to derive the water level (WL): the “hypsometric curve” and the “histogram cutoff” approaches at an 18 km × 18 km resolution. The obtained WL values are interpolated over the whole water mask using a bilinear interpolation. The two methods give similar results and validation with altimetry is satisfactory, with a correlation ranging from 0.72 to 0.89 in the seven considered stations over three rivers (i.e., Wingu, Negro, and Solimoes Rivers). River width (RW) and water volume change (WVC) are also estimated. WVC is evaluated with GRACE total water storage change, and correlations range from 0.77 to 0.88. A neural network (NN) statistical model is then used to estimate the RD based on four predictors (SWE, WL, WVC, and RW) and on in situ RD measurements. Results compare well to in situ measurements with a correlation of about 0.97 for the raw data (and 0.84 for the anomalies). The presented methodologies show the potential of historical satellite data (the combination of SWE with topography) to help estimate RD. Our study focuses here on a large river in the Amazon basin at a monthly scale; additional analyses would be required for other rivers, including smaller ones, in different environments, and at higher temporal scale.
               
Click one of the above tabs to view related content.