An understanding of the propagation process from meteorological to hydrological drought contributes to accurate prediction hydrological drought. However, the comprehensive influence of direct human activities involved in drought propagation is… Click to show full abstract
An understanding of the propagation process from meteorological to hydrological drought contributes to accurate prediction hydrological drought. However, the comprehensive influence of direct human activities involved in drought propagation is not well understood. In this study, an identification framework for drought propagation time was constructed to quantify the effects of direct human activities (i.e., reservoir storage, irrigation, industrial, domestic and agricultural water consumption) on drought propagation. Subsequently, the effects of meteorological and underlying surface factors on the drought propagation process were clarified based on random forest method, and the driving effect of teleconnection factors was investigated from top to bottom. The Wei River Basin (WRB), the largest tributary of the Yellow River Basin, was selected as the case study. Results disclosed that the propagation time from meteorological to hydrological drought was short in summer (approximately 2 months) and autumn (approximately 3 months), while long in spring (approximately 3–5 months) and winter (approximately 3–8 months), exhibiting noticeable spatial variability. In a changing environment, the propagation time generally showed a decreasing trend in spring and winter, while increasing propagation time was observed in summer and autumn. The dynamic drought propagation time of each season was all jointly controlled by the different extent variation of meteorological and underlying surface conditions, and the basic flow is all relatively significant throughout the period. Direct human activities had an effect on the seasonal dynamics of drought propagation, especially during the winter of the non-flood season, which alleviated the severity of winter hydrological drought to some extent, thus delaying the transmission of meteorological signals to hydrological systems. Sunspots, the dominant direct teleconnection driving force in the WRB, could indirectly affect the local precipitation and base flow in spring, autumn, and winter and interferes with the drought propagation process. This study sheds new insights into the attribution of drought propagation dynamics in a changing environment.
               
Click one of the above tabs to view related content.