The inferred diapycnal upwelling in the abyssal meridional overturning circulation (AMOC) is intensified near the equator, but little is known as to why this is so. In this study, it… Click to show full abstract
The inferred diapycnal upwelling in the abyssal meridional overturning circulation (AMOC) is intensified near the equator, but little is known as to why this is so. In this study, it is shown that the reflection of equatorially trapped waves (ETWs) off the bottom leads to seafloor-intensified mixing and substantial diapycnal upwelling near the equator when the full Coriolis force and the so-called nontraditional effects are taken into account. Using idealized simulations run with the MITgcm of downward-propagating ETWs of various types (i.e., inertia–gravity, Yanai, Kelvin, and Rossby waves) accounting for nontraditional effects, it is demonstrated that the reflection of ETWs off a flat seafloor generates beams of short inertia–gravity waves with strong vertical shear and low Richardson numbers that result in bottom-intensified, persistent, zonally invariant mixing at the inertial latitude of the ETW through the mechanism of critical reflection. The beams are more intense with weaker stratification and, for a given wave type, are stronger for waves with shorter periods and longer vertical wavelengths. The intensity of the beams also differs between wave types because their distinct meridional structures modulate the amount of energy fluxed to the bottom at the inertial latitude. As a result, equatorial inertia–gravity, Rossby, and eastward-propagating Yanai waves yield stronger mixing than Kelvin and westward-propagating Yanai waves in the simulations. It is estimated that this process can result in order 10 Sv (1 Sv ≡ 106 m3 s−1) of diapycnal upwelling per wavelength of ETW in the abyss and thus could play an important role in closing the AMOC.
               
Click one of the above tabs to view related content.