LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energetic Topographic Rossby Waves in the Northern South China Sea

Photo from wikipedia

Topographic Rossby waves (TRWs) are reported to make a significant contribution to the deep-ocean current variability. On the northern South China Sea (NSCS) continental slope, TRWs with peak spectral energy… Click to show full abstract

Topographic Rossby waves (TRWs) are reported to make a significant contribution to the deep-ocean current variability. On the northern South China Sea (NSCS) continental slope, TRWs with peak spectral energy at ~14.5 days are observed over about a year at deep moorings aligned east–west around the Dongsha Islands. The TRWs with a group velocity of O(10) cm s−1 contribute more than 40% of total bottom velocity fluctuations at the two mooring stations. The energy propagation and source are further identified using a ray-tracing model. The TRW energy mainly propagates westward along the NSCS continental slope with a slight downslope component. The possible energy source is upper-ocean 10–20-day fluctuations on the east side of the Dongsha Islands, which are transferred through the first baroclinic mode (i.e., the second EOF mode). These 10–20-day fluctuations in the upper ocean are associated with mesoscale eddies. However, to the west of the Dongsha Islands, the 10–20-day fluctuations in the upper ocean are too weak to effectively generate TRWs locally. This work provides an interesting insight toward understanding the NSCS deep current variability and the linkage between the upper- and deep-ocean currents.

Keywords: china sea; topographic rossby; rossby waves; south china; northern south

Journal Title: Journal of Physical Oceanography
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.