LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Basin Scale to Submesoscale Variability of the East-Mediterranean Sea Upper Circulation

Photo from wikipedia

The East Mediterranean Sea (EMS) circulation has previously been characterized as dominated by gyres, mesoscale eddies, and disjoint boundary currents. We develop nested high-resolution numerical simulations in the EMS to… Click to show full abstract

The East Mediterranean Sea (EMS) circulation has previously been characterized as dominated by gyres, mesoscale eddies, and disjoint boundary currents. We develop nested high-resolution numerical simulations in the EMS to examine the circulation variability with an emphasis on the yet unexplored regional submesoscale currents. Rather than several disjoint currents, a continuous cyclonic boundary current (BC) encircling the Levantine basin is identified in both model solution and altimetry data. This EMS BC advects eddy chains downstream and is identified as a principle source of regional mesoscale and submesoscale current variability. During the seasonal fall to winter mixed layer deepening, energetic submesoscale (O(10 km)) eddies, fronts, and filaments emerge throughout the basin, characterized by O(1) Rossby numbers. A submesoscale time scale range of ≈1–5 days is identified using spatiotemporal analysis of the numerical solutions, and confirmed through mooring data. The submesoscale kinetic energy (KE) wavenumber (k) spectral slope is found to be k−2, shallower than the quasigeostrophic-like ~ k−3 slope diagnosed in summer. The shallowness of the winter spectral slope is shown to be due to divergent subinertial motions, consistent with the Boyd 1992 theoretical model, rather than with the surface quasigeostrophic model. Using a coarse graining approach, we diagnose a seasonal inverse (forward) KE cascade above (below) 30 km scales due to rotational (divergent) motions, and show that these commence after completion of the fall submesosacle energization. We also show that at scales larger than several 100 kms, the spectral density becomes near-constant and a weak forward cascade occurs, from gyre scales to mesoscales.

Keywords: east mediterranean; basin; variability; mediterranean sea; circulation

Journal Title: Journal of Physical Oceanography
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.