AbstractThis study compared the efficiencies of two widely used automatic eddy detection algorithms—that is, the winding-angle (WA) method and the vector geometry (VG) method—and investigated the submesoscale eddy properties using… Click to show full abstract
AbstractThis study compared the efficiencies of two widely used automatic eddy detection algorithms—that is, the winding-angle (WA) method and the vector geometry (VG) method—and investigated the submesoscale eddy properties using surface current observations derived from high-frequency radars (HFRs) in the Taiwan Strait. The results showed that the WA method using the streamline and the VG method based on the streamfunction field have almost the same capacity for identifying eddies, but the former is more competent than the latter in capturing the eddy size. The two algorithms simultaneously identified 1080 submesoscale eddies, with the centers and boundaries determined only by the WA method, and they were further used to investigate the eddy properties. In general, no significant difference was observed between the cyclonic and anticyclonic eddies in terms of radius, life span, and kinematics, as well as the evolution during their life cycles. The typical radius of the eddy in this region was 3–18 km. A...
               
Click one of the above tabs to view related content.