LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Breaking Waves in Single Wave Gauge Records of Surface Elevation Fluctuations

Photo from wikipedia

We report the development of a new method for accurate detection of breaking water waves that addresses the need for an accurate and cost-effective method that is independent of human… Click to show full abstract

We report the development of a new method for accurate detection of breaking water waves that addresses the need for an accurate and cost-effective method that is independent of human decisions. The new detection method, which enables the detection of breakers using only surface elevation fluctuation measurements from a single wave gauge, supports the development of a new method for research relating to water waves and wind–wave interactions. According to the proposed method, detection is based on the use of the phase-time method to identify breaking-associated patterns in the instantaneous frequency variations of surface elevation fluctuations. A wavelet-based pattern recognition algorithm is devised to detect such patterns and provide accurate detection of breakers in the examined records. Validation and performance tests, conducted using both laboratory and open-sea data, including mechanically generated and wind-forced waves, are reported as well. These tests allow us to derive a set of parameters that assure high detection accuracy rates. The method is shown to be capable to achieve a positive detection rate exceeding 90%.

Keywords: detection breaking; method; surface elevation; wave gauge; single wave; detection

Journal Title: Journal of Atmospheric and Oceanic Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.