LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Assimilated Upstream, Preconvective Dropsonde Observations on Ensemble Forecasts of Convection Initiation during the Mesoscale Predictability Experiment

Photo from wikipedia

AbstractThis study tests the hypothesis that assimilating mid- to upper-tropospheric, meso-α- to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill… Click to show full abstract

AbstractThis study tests the hypothesis that assimilating mid- to upper-tropospheric, meso-α- to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill over the set of cases considered by the 2013 Mesoscale Predictability Experiment (MPEX) because of a limited influence upon the lower-tropospheric phenomena that modulate CI occurrence, timing, and location. The ensemble Kalman filter implementation within the Data Assimilation Research Testbed as coupled to the Advanced Research Weather Research and Forecasting (WRF) Model is used to initialize two nearly identical 30-member ensembles of short-range forecasts for each case: one initial condition set that incorporates MPEX dropsonde observations and one that excludes these observations. All forecasts for a given mission begin at 1500 UTC and are integrated for 15 h on a convection-permitting grid encompassing much of the conterminous United Stat...

Keywords: mesoscale predictability; convection initiation; predictability experiment; convection; upstream preconvective; dropsonde observations

Journal Title: Monthly Weather Review
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.