LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Joint Probability Density–Based Decomposition of Turbulence in the Atmospheric Boundary Layer

Photo by lexscope from unsplash

AbstractIn convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative… Click to show full abstract

AbstractIn convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations. However, the flux partition is challenging, especially in regions without convective cloud. A method to decompose the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based method partitions the full JPD into a joint Gaussian part and the complement, which represent the local mixing and the large-scale coherent motions, respectively. The coherent part can be further divided into updraft and downdraft parts based on the sign of vertical velocity. The flow decomposition is independent of water condensate (cloud) and can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. The metho...

Keywords: probability density; joint probability; turbulence; decomposition

Journal Title: Monthly Weather Review
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.