LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relationship of convection initiation and subsequent storm strength to ensemble simulated environmental conditions during IOP3b of VORTEX Southeast 2017

Photo from wikipedia

A fifty-member convection allowing ensemble was used to examine environmental factors influencing afternoon convection initiation (CI) and subsequent severe weather on 5 April 2017 during Intensive Observing Period (IOP) 3b… Click to show full abstract

A fifty-member convection allowing ensemble was used to examine environmental factors influencing afternoon convection initiation (CI) and subsequent severe weather on 5 April 2017 during Intensive Observing Period (IOP) 3b of the Verification of Rotation in Tornadoes Experiment in the Southeast (VORTEX-SE). This case produced several weak tornadoes (rated EF1 or less), and numerous reports of significant hail (diameter ≥ 2 inches), ahead of an eastward-moving surface cold front over eastern Alabama and southern Tennessee. Both observed and simulated CI was facilitated by mesoscale lower-tropospheric ascent maximized several tens of km ahead of the cold-frontal position, and the simulated mesoscale ascent was linked to surface frontogenesis in the ensemble mean. Simulated maximum 2-5-km AGL updraft helicity (UHmax) was used as a proxy for severe-weather producing mesocyclones, and considerable variability in UHmax occurred among the ensemble members. Ensemble members with UHmax > 100 m2 s-2 had stronger mesoscale ascent than in members with UHmax < 75 m2 s-2, which facilitated more timely CI by producing greater adiabatic cooling and moisture increases above the PBL. After CI, storms in the larger UHmax members moved northeastward toward a mesoscale region with larger convective available potential energy (CAPE) than in smaller UHmax members. The CAPE differences among members was influenced by differences in location of an antecedent mesoscale convective system, which had a thermodynamically stabilizing influence on the environment toward which storms were moving. Despite providing good overall guidance, the model ensemble overpredicted severe weather likelihoods in northeastern Alabama, where comparisons with VORTEX-SE soundings revealed a positive CAPE bias.

Keywords: convection; convection initiation; severe weather; initiation subsequent

Journal Title: Monthly Weather Review
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.