This study evaluates the impact of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) bending angles from Formosa Satellite Mission-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) receiver… Click to show full abstract
This study evaluates the impact of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) bending angles from Formosa Satellite Mission-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) receiver satellites on Hurricane Weather Research and Forecasting (HWRF) model tropical cyclone (TC) forecasts. Launched in June 2019, the COSMIC-2 mission provides significantly higher tropics data coverage compared to its predecessor COSMIC constellation. GNSS RO measurements yield information about atmospheric pressure, temperature, and water vapor profiles. HWRF is cycled with and without COSMIC-2 bending angle data assimilation for six 2020 Atlantic hurricane cases. COSMIC-2 assimilation has little impact on HWRF track forecasts, consistent with HWRF’s design limiting cycled data assimilation impacts on surrounding large-scale flows; however, COSMIC-2 assimilation results in a statistically significant ~ 8-12 % mean absolute forecast error reduction in minimum central sea-level pressure for t = 36, 54, 60, and 108-120 hour lead times. Forecasts initialized from analyses assimilating COSMIC-2 observations also have a 1-4 % smaller 600-700 hPa specific humidity (SPFH) root-mean-squared-deviation compared to radiosondes and dropwindsondes for most lead times. While not all HWRF intensity forecasts benefit from COSMIC-2 assimilation, a few show notable improvement. For example, assimilating two COSMIC-2 profiles within the inner core of developing Hurricane Hanna (2020) increases 800-hPa SPFH by up to 1 g kg−1 locally, helping correct a dry bias. The forecast initialized from this analysis better captures Hanna’s observed intensification rate, likely because its moister inner core facilitates development of persistent deep convection near the TC center, where diabatic heating is more efficiently converted to cyclonic wind kinetic energy.
               
Click one of the above tabs to view related content.