In this study, a convection-allowing ensemble prediction experiment was conducted on a strong convective weather process, based on the local breeding growth mode (LBGM) method proposed according to the strongly… Click to show full abstract
In this study, a convection-allowing ensemble prediction experiment was conducted on a strong convective weather process, based on the local breeding growth mode (LBGM) method proposed according to the strongly local nature of the convective-scale weather system. A comparative analysis of the evolution characteristics of the initial perturbation was also performed, considering the results from the traditional breeding growth mode (BGM) method, to enhance understanding and application of this new initial perturbation generation method. The experimental results showed that LBGM results in the perturbation distribution exhibiting characteristics more evident of flow dependence, and an initial perturbation with greater definite kinetic significance was derived. Information entropy theory could well measure the amount of information contained in the perturbation distribution, indicating that the innovative initial perturbation generation method can increase the amount of local information associated with the initial perturbation. With regard to the physical perturbation quantities, the LBGM method can improve the dispersion of the ensemble prediction system, thereby solving the problem of insufficient ensemble spread of prediction systems obtained by the traditional BGM method. Simultaneously, the root-mean-square error of the prediction can be further reduced, and the predicted precipitation distribution is closer to the observed precipitation, thereby improving the prediction effect of the convection-allowing ensemble prediction. The LBGM method has advantages compared to the traditional method and provides a new theoretical basis for further development of initial perturbation technologies for convection-allowing ensemble prediction.
               
Click one of the above tabs to view related content.