Identifying modes of convection can be useful in both forecasting and research. For example, it allows for potentially different impacts to be determined in forecasting contexts and stratification of model… Click to show full abstract
Identifying modes of convection can be useful in both forecasting and research. For example, it allows for potentially different impacts to be determined in forecasting contexts and stratification of model behavior in research contexts. One area where identification could be particularly beneficial is elevated convection. Elevated convection is not routinely examined (outside of an operational environment) within a physical-process perspective in operational numerical weather prediction model evaluation or verification. Using convection-allowing model (CAM) output the characteristics of four elevated convection diagnostics (based on boundary layer, Convective Available Potential Energy (CAPE) ratios, downdraft, and inflow layer properties) are examined in operational forecasts during the UK Testbed Summer 2021 run at the Met Office. A survey of the practical use of these diagnostics in a simulated operational environment revealed that diagnostics based on CAPE ratios and inflow layer properties were preferred. These diagnostics were the smoothest varying in both space and time. Treating the CAPE ratio and downdraft properties diagnostics as proxies for updrafts and downdrafts, respectively, showed that updrafts were slightly more likely to be resolved than downdrafts. However, a substantial proportion of both are unresolved in current CAMs. Filtering the CAPE ratios by the inflow layer properties led to improved spatial and temporal characteristics, and thus indicates a potentially useful diagnostic for both research and forecasting.
               
Click one of the above tabs to view related content.