LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography–Vacuum Ultraviolet Spectroscopy: An Experimental and Computational Study

Photo from wikipedia

Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography–vacuum ultraviolet spectroscopy (GC–VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde. These decomposition products… Click to show full abstract

Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography–vacuum ultraviolet spectroscopy (GC–VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde. These decomposition products exhibit highly structured spectra in the VUV that is not seen in larger molecules. Computational analysis using time-dependent density functional theory (TDDFT) was utilized to investigate the excited states and vibronic transitions of these decomposition products. The experimental and computational results are compared with those in previous literature using synchrotron spectroscopy, electron energy loss spectroscopy (EELS), photoabsorption spectroscopy, and other computational excited state methods. It was determined that a benchtop GC–VUV detector gives comparable results to those previously reported, and TDDFT could predict vibronic spacing and model molecular orbital diagrams.

Keywords: using gas; ester explosives; nitrate ester; spectroscopy; decomposition products; decomposition

Journal Title: Applied Spectroscopy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.