LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluating the Quality of Classification in Mixture Model Simulations

Photo by ludovicolovi from unsplash

The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the… Click to show full abstract

The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the model. To accomplish this task, Monte Carlo simulations were conducted in which the results of models with and without a covariate were compared. Based on these simulations, it was determined that models without a covariate better predicted the number of classes. These findings in general supported the use of the popular three-step approach; with its quality of classification determined to be more than 70% under various conditions of covariate effect, sample size, and quality of indicators. In light of these findings, the practical utility of evaluating classification quality is discussed relative to issues that applied researchers need to carefully consider when applying latent class models.

Keywords: quality; classification; evaluating quality; classification mixture; model; quality classification

Journal Title: Educational and Psychological Measurement
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.