LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and mechanical properties of three dimensional-printed continuous fiber composites

Photo from academic.microsoft.com

Additive manufacturing processes have a demonstrated capacity for flexible production of metal and polymer components. More recently, capabilities for three dimensional printing of continuous fiber reinforced composites were developed. As… Click to show full abstract

Additive manufacturing processes have a demonstrated capacity for flexible production of metal and polymer components. More recently, capabilities for three dimensional printing of continuous fiber reinforced composites were developed. As with printed metal and polymer materials, printed composites will exhibit a unique microstructure with morphological features and process artifacts that manifest on multiple length scales. The aim of this research was to investigate the microstructures of various printed continuous fiber composites and determine linkages to consequent mechanical properties such as stiffness and strength. Samples investigated in this study comprised unidirectional carbon fibers in nylon matrix, unidirectional Kevlar fibers in nylon matrix, and Kevlar fibers in nylon matrix aligned at ±45° directions. Tensile properties of the samples were evaluated along with comparison to expected properties. Fiber volume ratios were analyzed by thermogravimetric analysis. Scanning electron microscopy and optical microscopy were used to observe and characterize the hierarchical microstructure. Both strength and stiffness were approximately 30–40% weaker than traditionally produced composites, owing to features such as imperfect interfaces between printed layers, microvoids, incomplete fill density, and similar process artefacts. Future work will investigate mitigation of such effects through process modifications and post-processing to produce higher performance printed composites.

Keywords: three dimensional; microscopy; fiber composites; continuous fiber; printed continuous

Journal Title: Journal of Composite Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.