LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites

Photo from wikipedia

Atomistic simulation together with micromechanical analysis was employed to characterize the Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. Nanocomposites containing pristine graphene, carboxyl (COOH)-functionalized graphene, and COOH- and amine… Click to show full abstract

Atomistic simulation together with micromechanical analysis was employed to characterize the Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. Nanocomposites containing pristine graphene, carboxyl (COOH)-functionalized graphene, and COOH- and amine (NH2)-functionalized graphene were considered in the simulations. The effect of atomistic interaction between the graphene and the surrounding epoxy was accounted for in the molecular dynamics simulations and then used to derive the effective properties of graphene. Subsequently, the Young’s modulus and thermal conductivity of nanocomposites containing randomly oriented graphene were modeled using the Mori–Tanaka micromechanical model. The results indicated that the COOH- and NH2-functionalized graphene nanocomposite had superior mechanical and thermal properties to the other two material systems. Moreover, the model predictions were in favorable agreement with the experimental data.

Keywords: graphene; thermal conductivity; young modulus; modulus thermal; conductivity graphene

Journal Title: Journal of Composite Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.