LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Response and failure of fiber metal laminates subjected to high strain rate tensile loading

Photo from wikipedia

The tensile behavior of fiber metal laminates consisting of layers of aluminum 2024-T3 alloy and glass fiber reinforced composites under high strain rate loading is investigated. Fiber metal laminates having… Click to show full abstract

The tensile behavior of fiber metal laminates consisting of layers of aluminum 2024-T3 alloy and glass fiber reinforced composites under high strain rate loading is investigated. Fiber metal laminates having four different layups, but all having the same total metal layer thickness, were fabricated using a combined hand lay-up cum vacuum bagging method. The fiber metal laminate specimens were loaded in high strain rate tension using a split Hopkinson tensile bar. The rate-dependent behavior of the glass fiber composite was also obtained as baseline data. The strain on the gage area of the specimen was measured directly using high-speed digital image correlation. Another high-speed camera was used to capture the sequence of damage by viewing the specimen edgewise. The results indicated that the strength of the fiber metal laminates increased at high strain rates primarily due to the rate-dependent behavior of the composite used. The response was also influenced by the distribution of the metallic layers in the fiber metal laminates. The failure in the case where the individual composite layers were separated by metallic layers was more progressive in nature.

Keywords: high strain; fiber metal; rate; metal laminates

Journal Title: Journal of Composite Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.