LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-plane shear and tensile behavior of two-pass injection-molded glass fiber reinforced polypropylene composites with different fiber lengths

Photo by ldxcreative from unsplash

Glass fiber reinforced polypropylene (GF-PP) composites have proven a great potential in the designation and manufacturing of control arms, leaf springs, barriers, beams and bridge decks. Two-pass injection molding of… Click to show full abstract

Glass fiber reinforced polypropylene (GF-PP) composites have proven a great potential in the designation and manufacturing of control arms, leaf springs, barriers, beams and bridge decks. Two-pass injection molding of GF-PP was investigated in this study. Polypropylene (PP) was injected with different weight fractions (w%) of chopped glass fibers (GFs) with different fiber feedstock lengths (FFSLs). The composites were then crushed and re-injected once again. Some specimens were burned out to check the actual weight fractions and fiber lengths after the injection processes. The fiber lengths dramatically decreased due to damages during two-pass injection processes and crushing. The manufactured specimens were tested in tension, and the results indicated that the tensile strength increased slightly at w = 10% of GF. Further increase of GF weight fraction leads to a drop in the tensile strength below neat PP. The results of SEM micrographs showed an increase in air voids concentrations at high GF percentages which clarifies the reason behind the drop in the tensile strength. Also, in-plane shear tests were carried out using the Iosipescu fixture where a slight increase in the in-plane shear strength was noticed by increasing fiber weight fractions. In-plane shear moduli of all specimens were measured experimentally by strain gauges and calculated theoretically. The shear modulus was enhanced by glass fiber addition and a further increase was noticed by increasing the fiber weight fractions.

Keywords: injection; plane shear; glass fiber; fiber; two pass

Journal Title: Journal of Composite Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.